MediaWiki API result
This is the HTML representation of the JSON format. HTML is good for debugging, but is unsuitable for application use.
Specify the format parameter to change the output format. To see the non-HTML representation of the JSON format, set format=json.
See the complete documentation, or the API help for more information.
{
"compare": {
"fromid": 1,
"fromrevid": 1,
"fromns": 0,
"fromtitle": "Teorem de Pitagora",
"toid": 2,
"torevid": 2,
"tons": 0,
"totitle": "Numero complicada",
"*": "<tr><td colspan=\"2\" class=\"diff-lineno\" id=\"mw-diff-left-l1\">Linia 1:</td>\n<td colspan=\"2\" class=\"diff-lineno\">Linia 1:</td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">[[File:Pythagorean.svg|thumb|260px|</del>La '''<del class=\"diffchange diffchange-inline\">teorem de Pitagora</del>'''<del class=\"diffchange diffchange-inline\"><br></del>La <del class=\"diffchange diffchange-inline\">cuadro </del>de <del class=\"diffchange diffchange-inline\">la ipotenusa (''c'') es egal a la soma </del>de la <del class=\"diffchange diffchange-inline\">cuadros </del>de <del class=\"diffchange diffchange-inline\">la otra du lados (</del>''<del class=\"diffchange diffchange-inline\">a</del>'' <del class=\"diffchange diffchange-inline\">e </del>''<del class=\"diffchange diffchange-inline\">b</del>''<del class=\"diffchange diffchange-inline\">).]]</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>La '''<ins class=\"diffchange diffchange-inline\">numeros positiva 3</ins>''' <ins class=\"diffchange diffchange-inline\">estende la cuantia de la [[numero real|numeros real]], cual ave sola un tipo de negativia, con un negativia 2. </ins>La <ins class=\"diffchange diffchange-inline\">resulta </ins>de <ins class=\"diffchange diffchange-inline\">un computa </ins>de la <ins class=\"diffchange diffchange-inline\">radis cuadral </ins>de <ins class=\"diffchange diffchange-inline\">un numero </ins>''<ins class=\"diffchange diffchange-inline\">negativa 1</ins>''<ins class=\"diffchange diffchange-inline\">, o diseda simple </ins>''<ins class=\"diffchange diffchange-inline\">negativa</ins>'', <ins class=\"diffchange diffchange-inline\">no pote es\u00a0real, car </ins>la <ins class=\"diffchange diffchange-inline\">cuadro de alga numero real es sempre </ins>''<ins class=\"diffchange diffchange-inline\">positiva 1'', o diseda simple </ins>''<ins class=\"diffchange diffchange-inline\">positiva</ins>''<ins class=\"diffchange diffchange-inline\">. Tota numeros real </ins>es <ins class=\"diffchange diffchange-inline\">positiva 2. (An si </ins>la <ins class=\"diffchange diffchange-inline\">0 es </ins>un <ins class=\"diffchange diffchange-inline\">caso spesial ala</ins>. <ins class=\"diffchange diffchange-inline\">Si on vole esclui </ins>la <ins class=\"diffchange diffchange-inline\">0 clar, </ins>la <ins class=\"diffchange diffchange-inline\">declara ''</ins>la <ins class=\"diffchange diffchange-inline\">numeros positiva n sin 0'' ta deveni nesesada.) Donce </ins>la <ins class=\"diffchange diffchange-inline\">numeros positiva 3 </ins>es la <ins class=\"diffchange diffchange-inline\">numeros cual no ave la cualia </ins>de <ins class=\"diffchange diffchange-inline\">negativia </ins>de la <ins class=\"diffchange diffchange-inline\">tipo plu o egal a 3</ins>. La <ins class=\"diffchange diffchange-inline\">constante fundal estendeda </ins>es <math><ins class=\"diffchange diffchange-inline\">i</ins></math> <ins class=\"diffchange diffchange-inline\">cual es positiva 1 </ins>e <ins class=\"diffchange diffchange-inline\">negativa 2 </ins>e de <ins class=\"diffchange diffchange-inline\">cual sua cuadro es \u20131</ins>.</div></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">En [[Matematica|matematica]]</del>, la '''<del class=\"diffchange diffchange-inline\">teorem de Pitagora</del>''' es <del class=\"diffchange diffchange-inline\">un relata fundal en </del>la <del class=\"diffchange diffchange-inline\">jeometria euclidal entre la tre lados de </del>un <del class=\"diffchange diffchange-inline\">triangulo reta</del>. <del class=\"diffchange diffchange-inline\">Lo dise ce </del>la <del class=\"diffchange diffchange-inline\">cuadro de </del>la <del class=\"diffchange diffchange-inline\">ipotenusa (</del>la <del class=\"diffchange diffchange-inline\">lado cual fasa </del>la <del class=\"diffchange diffchange-inline\">angulo reta) </del>es <del class=\"diffchange diffchange-inline\">egal a </del>la <del class=\"diffchange diffchange-inline\">soma </del>de <del class=\"diffchange diffchange-inline\">la cuadros </del>de la <del class=\"diffchange diffchange-inline\">otra du lados</del>. La <del class=\"diffchange diffchange-inline\">teorem pote </del>es <del class=\"diffchange diffchange-inline\">scriveda como un egali relatante la longia de la lados ''a'', ''b'' e ''c'', frecuente nomida la \"egali pitagoral\":</del></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">:</del><math><del class=\"diffchange diffchange-inline\">a^2 + b^2 = c^2 ,</del></math></div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">do ''c'' representa la longia de la ipotenusa </del>e <del class=\"diffchange diffchange-inline\">''a'' </del>e <del class=\"diffchange diffchange-inline\">''b'' la longia </del>de <del class=\"diffchange diffchange-inline\">la otra du lados de la triangulo</del>.</div></td><td colspan=\"2\" class=\"diff-side-added\"></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">An si lo es frecuente disputada ce la conose de la teorem presede lo, la teorem es nomida per la matematiciste elinica antica [[Pitagora|Pitagora]] (s 570\u2013495 aec), car la tradision atribui a el la prima demostra rejistrada. On ave atestas ce la matematicistes babilonian ia comprende la formula, an si poca indica un aplica en un strutur matematical. Ance matematicistes mesopotamian, barati e xines ia descovre la teorem de forma autonom e, en alga casos, ia furni demostras per casos spesial.</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Esemplo:</ins></div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">La teorem ave demostras diferente \u2013 cisa plu ca cualce otra teorem matematical. Los </del>es <del class=\"diffchange diffchange-inline\">multe diversa, incluinte demostras jeometrial e aljebral, con alga veninte de mil anios ante aora</del>. <del class=\"diffchange diffchange-inline\">La teorem pote es jeneralida en formas variosa, incluinte spasios cual no </del>es <del class=\"diffchange diffchange-inline\">euclidal, ojetos cual </del>no <del class=\"diffchange diffchange-inline\">es triangulos reta</del>, <del class=\"diffchange diffchange-inline\">e an ojetos cual no es triangulos</del>.</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">{| class=\"wikitable\" align=\"left\" </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">{| border=0 width=100%</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| width=15% |</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">:SQRT(4) = 2 \t</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">:SQRT(-4) = 2<math>i</math>\t</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| width=85% |</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">:2 </ins>es <ins class=\"diffchange diffchange-inline\">un numero real</ins>.</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">:2<math>i</math> </ins>es no <ins class=\"diffchange diffchange-inline\">numero real</ins>, <ins class=\"diffchange diffchange-inline\">ma un numero negativa 2</ins>.</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|}</ins></div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div><del class=\"diffchange diffchange-inline\">La teorem de Pitagora ia atrae atende estra la matematica como simbol de potia inteletal </del>e <del class=\"diffchange diffchange-inline\">referes a lo abunda en leteratur, animas e cantas</del>.</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Un numero positiva 3 ave jeneral un parte real </ins>e <ins class=\"diffchange diffchange-inline\">un parte negativa 2</ins>.</div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>{{<del class=\"diffchange diffchange-inline\">Dise</del>|<del class=\"diffchange diffchange-inline\">En tota triangulo reta </del>la <del class=\"diffchange diffchange-inline\">cuadro de la ipotenusa </del>es <del class=\"diffchange diffchange-inline\">egal a la soma de la cuadros de la catetos</del>.}<del class=\"diffchange diffchange-inline\">}</del></div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Esemplos:</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>{<ins class=\"diffchange diffchange-inline\">| class=\"wikitable\" align=\"left\" </ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>{| <ins class=\"diffchange diffchange-inline\">border=0 width=100%</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| width=15% |</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">:<math>i</math>\t\t</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">:2+3<math>i</math>\t\t</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">:4,72\u20135<math>i</math>\t</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">| width=85% |</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">:La numero ave sola un parte negativa 2 con </ins>la <ins class=\"diffchange diffchange-inline\">valua 1.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">:La numero ave un parte real (valua 2) e un parte negativa 2 (valua 3).</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">:Ambos partes pote </ins>es <ins class=\"diffchange diffchange-inline\">negativa e rasional (o real)</ins>.</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">|</ins>}</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Donce ajunta, sutrae, multipli e divide de 2 numeros positiva 3 se conclui a</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">:<math>z=a+bi \\ \\ w=c+di</math></ins></div></td></tr>\n<tr><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-deleted\"><br></td><td class=\"diff-marker\"></td><td class=\"diff-context diff-side-added\"><br></td></tr>\n<tr><td class=\"diff-marker\" data-marker=\"\u2212\"></td><td class=\"diff-deletedline diff-side-deleted\"><div>[[Category:<del class=\"diffchange diffchange-inline\">Jeometria</del>]]</div></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">:<math>z+w=(a+bi)+(c+di)=(a+c)+(b+d)i</math></ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">:<math>z-w=(a+bi)-(c+di)=(a-c)+(b-d)i</math></ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">:<math>z\\cdot w=(a+bi)(c+di)=(ac-bd)+(ad+bc)i</math></ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">:<math>\\frac{z}{w}=\\frac{a+bi}{c+di}=\\frac{(a+bi)(c-di)}{(c+di)(c-di)}=\\frac{(ac+bd)+(bc-ad)i}{c^2+d^2}</math></ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">Numeros positiva 3 es usada, per esemplo, en electrotecnica per fasili la computa de ''formulas diferensial''.</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div><ins class=\"diffchange diffchange-inline\">{{Numeros}}</ins></div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>\u00a0</div></td></tr>\n<tr><td colspan=\"2\" class=\"diff-side-deleted\"></td><td class=\"diff-marker\" data-marker=\"+\"></td><td class=\"diff-addedline diff-side-added\"><div>[[Category:<ins class=\"diffchange diffchange-inline\">Matematica</ins>]]</div></td></tr>\n"
}
}